查看: 8016|回复: 11

[交流] 磁场

  [复制链接]
发表于 2012-12-12 20:32:37 | 显示全部楼层 |阅读模式

磁场是一种看不见,而又摸不着的特殊物质,它具有波粒的辐射特性。磁体周围存在磁场,磁体间的相互作用就是以磁场作为媒介的。电流、运动电荷、磁体或变化电场周围空间存在的一种特殊形态的物质。由于磁体的磁性来源于电流,电流是电荷的运动,因而概括地说,磁场是由运动电荷或电场的变化而产生的。

本帖子中包含更多资源

您需要 登录 才可以下载或查看,没有帐号?立即注册

x
回复

使用道具 举报

 楼主| 发表于 2012-12-12 20:37:48 | 显示全部楼层
简易定义:对放入其中的磁体有磁力的作用的物质叫做磁场。
  
  电子内圈为-磁场,外圈为-电场
传递运动电荷或电流之间相互作用的物理场,由运动电荷或电流产生,同时对场中其它运动电荷或电流发生力的作用。磁场是物质​的一种形态。[2]

  形成原因:假想有一根直立的金属棒,上下两端加上电位差使得电子朝向正电位端加速,而另一端由于缺少电子而带正电。这样的电流会在四周空间形成磁场。
  磁场的基本特征是能对其中的运动电荷施加作用力,即通电导体在磁场中受到磁场的作用力。磁场对电流、对磁体的作用力或力距皆源于此。而现代理论则说明,磁力是电场力的相对论效应。
  与电场相仿,磁场是在一定空间区域内连续分布的向量场,描述磁场的基本物理量是磁感应强度矢量B ,也可以用磁感线形象地图示。然而,作为一个矢量场,磁场的性质与电场颇为不同。运动电荷或变化电场产生的磁场,或两者之和的总磁场,都是无源有旋的矢量场,磁力线是闭合的曲线簇,不中断,不交叉。换言之,在磁场中不存在发出磁力线的源头,也不存在会聚磁力线的尾闾,磁力线闭合表明沿磁力线的环路积分不为零,即磁场是有旋场而不是势场(保守场),不存在类似于电势那样的标量函数。
  磁场示意图
  电磁场是电磁作用的媒递物,是统一的整体,电场和磁场是它紧密联系、相互依存的两个侧面,变化的电场产生磁场,变化的磁场产生电场,变化的电磁场以波动形式在空间传播。电磁波以有限的速度传播,具有可交换的能量和动量,电磁波与实物的相互作用,电磁波与粒子的相互转化等等,都证明电磁场是客观存在的物质,它的“特殊”只在于没有静质量。
  在电磁学里,磁石、磁铁、电流、含时电场,都会产生磁场[1]。处于磁场中的磁性物质或电流,会因为磁场的作用而感受到磁力,因而显示出磁场的存在。磁场是一种矢量场;磁场在空间里的任意位置都具有方向和数值大小[notes 1]。
  磁铁与磁铁之间,通过各自产生的磁场,互相施加作用力和力矩于对方。运动中的电荷会产生磁场。磁性物质产生的磁场可以用电荷运动模型来解释[notes 2]。
  当施加外磁场于物质时,磁性物质的内部会被磁化,会出现很多微小的磁偶极子。磁化强度估量物质被磁化的程度。知道磁性物质的磁化强度,就可以计算出磁性物质本身产生的磁场。创建磁场需要输入能量。当磁场被湮灭时,这能量可以再回收利用,因此,这能量被视为储存于磁场。
  电场是由电荷产生的。电场与磁场有密切的关系;含时磁场会生成电场,含时电场会生成磁场。麦克斯韦方程组可以描述电场、磁场、产生这些矢量场的电流和电荷,这些物理量之间的详细关系。根据狭义相对论,电场和磁场是电磁场的两面。设定两个参考系A和B,相对于参考系A,参考系B以有限速度移动。从参考系A观察为静止电荷产生的纯电场,在参考系B观察则成为移动中的电荷所产生的电场和磁场。
  在量子力学里,科学家认为,纯磁场(和纯电场)是虚光子所造成的效应。以标准模型的术语来表达,光子是所有电磁作用的显现所依赖的媒介。对于大多数案例,不需要这样微观的描述,在本文章内陈述的简单经典理论就足足有余了;在低场能量状况,其中的差别是可以忽略的。
  在古今社会里,很多对世界文明有重大贡献的发明都涉及到磁场的概念。地球能够产生自己的磁场,这在导航方面非常重要,因为指南针的指北极准确地指向位置在地球的地理北极附近的地磁北极。电动机和发电机的运作都依赖因磁铁转动而随着时间改变的磁场。通过霍尔效应,可以给出物质的带电粒子的性质。磁路学专门研讨,各种各样像变压器一类的电子元件,其内部磁场的相互作用。
  磁现象是最早被人类认识的物理现象之一,指南针是中国古代一大发明。磁场是广泛存在的,地球,恒星(如太阳),星系(如银河系),行星、卫星,以及星际空间和星系际空间,都存在着磁场。为了认识和解释其中的许多物理现象和过程,必须考虑磁场这一重要因素。在现代科学技术和人类生活中,处处可遇到磁场,发电机、电动机、变压器、电报、电话、收音机以至加速器、热核聚变装置、电磁测量仪表等无不与磁现象有关。甚至在人体内,伴随着生命活动,一些组织和器官内也会产生微弱的磁场。地球的磁级与地理的两极相反。

本帖子中包含更多资源

您需要 登录 才可以下载或查看,没有帐号?立即注册

x
回复 支持 反对

使用道具 举报

 楼主| 发表于 2012-12-12 20:40:04 | 显示全部楼层
磁场方向
 规定小磁针的北极在磁场中某点所受磁场力的方向为该电磁场的方向 在磁体外部,磁感线从北极出发到南极的方向,在磁体内部是由南极到北极,在外可表现为磁感线的切线方向或放入磁场的小磁针在静止时北极所指的方向!磁场的南北极与地理的南北极正好相反,且一端的两种极之间存在一个偏角,称为磁偏角。磁偏角不断地发生缓慢变化。掌握磁偏角的变化对于应用指南针指向具有重要意义。

  磁感线(Magnetic Induction Iine):在磁场中画一些曲线,用(虚线或实线表示)使曲线上任何一点的切线方向都跟这一点的磁场方向相同(且磁感线互不交叉),这些曲线叫磁感线。磁感线是闭合曲线。规定小磁针的北极所指的方向为磁感线的方向。磁铁周围的磁感线都是从N极出来进入S极或传向无穷远处,在磁体内部磁感线从S极到N极。

  磁感线是为了形象地研究磁场而人为假想的曲线,并不是客观存在于磁场中的真实曲线。但可以根据磁感线的疏密,判断磁性的强弱。磁感线密集,则磁性强,稀疏,则弱。

本帖子中包含更多资源

您需要 登录 才可以下载或查看,没有帐号?立即注册

x
回复 支持 反对

使用道具 举报

 楼主| 发表于 2012-12-12 20:45:07 | 显示全部楼层
磁场类型
恒磁场又称为静磁场,而交变磁场,脉动磁场和脉冲磁场属于动磁场。磁场的空间各处的磁场强度相等或大致相等的称为均匀磁场,否则就称为非均匀磁场。离开磁极表面越远,磁场越弱,磁场强度呈梯度变化。
 
  计算机模拟演示地球的磁场
1.恒定磁场 磁场强度和方向保持不变的磁场称为恒定磁场或恒磁场,如铁磁片和通以直流电的电磁铁所产生的磁场。
  2.交变磁场 磁场强度和方向在规律变化的磁场,如工频磁疗机和异极旋转磁疗器产生的磁场。
  3.脉动磁场 磁场强度有规律变化而磁场方向不发生变化的磁场,如同极旋转磁疗器、通过脉动直流电磁铁产生的磁场。 
  4.脉冲磁场 用间歇振荡器产生间歇脉冲电流,将这种电流通入电磁铁的线圈即可产生各种形状的脉冲磁场。脉冲磁场的特点是间歇式出现磁场,磁场的变化频率、波形和峰值可根据需要进行调节。
  以下是两种常见的磁场:
电磁场
 电磁场(electromagnetic field)是有内在联系、相互依存的电场和磁场的统一体和总称。随时间变化的电场产生磁场,随时间变化的磁场产生电场,两者互为因果,形成电磁场。电磁场可由变速运动的带电粒子引起,也可由强弱变化的电流引起,不论原因如何,电磁场总是以光速向四周传播,形成电磁波。电磁场是电磁作用的媒递物,具有能量和动量,是物质存在的一种形式。电磁场的性质、特征及其运动变化规律由麦克斯韦方程组确定。

地磁场
  地磁场(geomagnetic field)是从地心至磁层顶的空间范围内的磁场。地磁学的主要研究对象。人类对于地磁场存在的早期认识,来源于天然磁石和磁针的指极性。地磁的北磁极在地理的南极附近;地磁的南磁极在地理的北极附近。磁针的指极性是由于地球的北磁极(磁性为S极)吸引着磁针的N极,地球的南磁极(磁性为N极)吸引着磁针的S极。这个解释最初是英国W.吉伯于1600年提出的

地球磁场示意图
。吉伯所作出的地磁场来源于地球本体的假定是正确的。这已为1839年德国数学家C.F.高斯首次运用球谐函数分析法所证实。
  地磁的磁感线和地理的经线是不平行的,它们之间的夹角叫做磁偏角。中国古代的著名科学家沈括是第一个注意到磁偏角现象的科学家。
  地磁场是一个向量场。描述空间某一点地磁场的强度和方向,需要3个独立的地磁要素。常用的地磁要素有7个,即地磁场总强度F,水平强度H,垂直强度Z,X和Y分别为H的北向和东向分量,D和I分别为磁偏角和磁倾角。其中以磁偏角的观测历史为最早。在现代的地磁场观测中,地磁台一般只记录H,D,Z或X,Y,Z。
  近地空间的地磁场,像一个均匀磁化球体的磁场,其强度在地面两极附近还不到1高斯,所以地磁场是非常弱的磁场。地磁场强度的单位过去通常采用伽马(γ),即1纳特斯拉。1960年决定采用特斯拉作为国际测磁单位,1高斯=10^(-4)特斯拉(T),1伽马=10^(-9)特斯拉=1纳特斯拉(nT),简称纳特。地磁场虽然很弱,但却延伸到很远的空间,保护着地球上的生物和人类,使之免受宇宙辐射的侵害。
  地磁场包括基本磁场和变化磁场两个部分,它们在成因上完全不同。基本磁场是地磁场的主要部分,起源于地球内部,比较稳定,变化非常缓慢。变化磁场包括地磁场的各种短期变化,主要起源于地球外部,并且很微弱。
  地球的基本磁场可分为偶极子磁场、非偶极子磁场和地磁异常几个组成部分。偶极子磁场是地磁场的基本成

地球核心的流体部分对地球磁场的影响
分,其强度约占地磁场总强度的90%,产生于地球液态外核内的电磁流体力学过程,即自激发电机效应。非偶极子磁场主要分布在亚洲东部、非洲西部、南大西洋和南印度洋等几个地域,平均强度约占地磁场的10%。地磁异常又分为区域异常和局部异常,与岩石和矿体的分布有关。
  地球变化磁场可分为平静变化和干扰变化两大类型。平静变化主要是以一个太阳日为周期的太阳静日变化,其场源分布在电离层中。干扰变化包括磁暴、地磁亚暴、太阳扰日变化和地磁脉动等,场源是太阳粒子辐射同地磁场相互作用在磁层和电离层中产生的各种短暂的电流体系。磁暴是全球同时发生的强烈磁扰,持续时间约为1~3天,幅度可达10纳特。其他几种干扰变化主要分布在地球的极光区内。除外源场外,变化磁场还有内源场。内源场是由外源场在地球内部感应出来的电流所产生的。将高斯球谐分析用于变化磁场,可将这种内、外场区分开。根据变化磁场的内、外场相互关系,可以得出地球内部电导率的分布。这已成为地磁学的一个重要领域,叫做地球电磁感应。
  地球变化磁场既和磁层、电离层的电磁过程相联系,又和地壳上地幔的电性结构有关,所以在空间物理学和固体地球物理学的研究中都具有重要意义。

本帖子中包含更多资源

您需要 登录 才可以下载或查看,没有帐号?立即注册

x
回复 支持 反对

使用道具 举报

 楼主| 发表于 2012-12-13 12:28:43 | 显示全部楼层
宇宙中的大型磁场

太阳磁场
  太阳普遍磁场指日面宁静区的微弱磁场,强度约1×10-4~3×10-4特斯拉,它在太阳南北两极区极性相反,近年的观测发现,通过光球的大多数磁通量管被集中在太阳表面称作磁元的区域,其半径为100~300千米,场强为0.1~0.2特斯拉,大多数磁元出现在米粒和超米粒边界及活动区内。如果把太阳当做一颗恒星,可测到它的整体磁场约3×10-5特斯拉,这个磁场是东西反向的。
  基本信息
  太阳磁场solar magnetic field
  太阳的绝大部分物质是高温等离子体,太阳的物态、运动和演变都与磁场密切相关。太阳黑子、耀斑、日珥等活动现象,更是直接受磁场支配。因此,太阳磁场的研究具有重要意义。

  太阳磁场的定义
  分布于太阳和行星际空间的磁场。分大尺度结构和小尺度结构。前者主要指太阳普遍磁场和整体磁场,它们是单极性的,后者则主要集中在太阳活动区附近,且绝大多数是双极磁场。
  在太阳风作用下,太阳磁场还弥漫整个行星际空间,形成行星际磁场。它的极性与太阳整体磁场一致,随着离开太阳的距离增加而减弱。各种太阳活动现象都与磁场密切相关:耀斑产生前后,附近活动区磁场有剧烈变化(如磁场湮灭);黑子的磁场最强,小黑子约0.1特斯拉,大黑子可达0.3~0.4特斯拉甚至更高。谱斑的磁场约0.02特斯拉。日珥的形成和演化也受磁场的支配。

  太阳活动区磁场
  太阳黑子磁场
  一般说来,一个黑子群中有两个主要黑子,它们的磁极性相反。如果前导黑子是N极的,则后随黑子就是S极的。在同一半球(例如北半球),各黑子群的磁极性分布状况是相同的;而在另一半球(南半球)情况则与此相反。在一个太阳活动周期(约11年)结束、另一个周期开始时,上述磁极性分布便全部颠倒过来。因此,每隔22年黑子磁场的极性分布经历一个循环,称为一个磁周。强磁场是太阳黑子最基本的特征。黑子的低温、物质运动和结构模型都与磁场息息相关。

  耀斑与磁场的关系
  耀斑是最强烈的太阳活动现象。一次大耀斑爆发可以释放1030~1033尔格的能量,这个能量可能来自磁场。在活动区内一个强度为几百高斯的磁场一旦湮没,它所蕴藏的磁能便全部释放出来,足够供给一次大耀斑爆发。在耀斑爆发前后,附近活动区的磁场往往有剧烈的变化。本来是结构复杂的磁场,在耀斑发生后就变得比较简单了。这就是耀斑爆发的磁场湮没理论的证据。

  日珥的磁场
  日珥的温度约为一万度,它却能长期存在于温度高达一、两百万度的日冕中,既不迅速瓦解,也不下坠到太阳表面,这主要是靠磁力线的隔热和支撑作用。宁静日珥的磁场强度约为10高斯,磁力线基本上与太阳表面平行;活动日珥的磁场强一些,可达200高斯,磁场结构较为复杂。

  太阳普遍磁场
  除太阳活动区外,日面宁静区也有微弱的磁场。整个说来,太阳和地球相似,也有一个普遍磁场。不过由于局部活动区磁场的干扰,太阳普遍磁场只是在两极区域比较显著,而不象地球磁场那样完整。太阳极区的磁场强度只有1~2高斯。太阳普遍磁场的强度经常变化,甚至极性会突然转换。这种情况在1957~1958年和1971~1972年曾两次观测到。

  太阳整体磁场
  如果把太阳当作一颗恒星,让不成像的太阳光束射进磁像仪,就可测出日面各处混合而成的整体磁场。这种磁场的强度呈现出有规则的变化,极性由正变负,又由负变正。大致来说,在每个太阳自转周(约27天)内变化两次。对这个现象很容易作这样的解释:日面上有东西对峙的极性相反的大片磁区,随着太阳由东向西自转,科学家们就可以交替地观察到正和负的整体磁场。总之,太阳上既有普遍磁场,又有整体磁场。前者是南北相反的,后者是东西对峙的。

  太阳系磁场结构
  太阳磁场的精细结构
  近年来通过高分辨率的观测表明,太阳磁场有很复杂的精细结构。就活动区来说,在同一个黑子范围内各处磁场强度往往相差悬殊;并且在一个就整体说来是某一极性(例如N极)的黑子里,常含有另一极性(S极)的小磁结点。因此,严格说来,单极黑子并不存在。在横向磁场图上,不仅各处强度不同,方位角也不一样。在黑子半影中,较亮条纹与它们之间的较暗区域的磁场也有明显的差异。在活动区中,磁结点的直径约为1,000公里,磁场强度为1,000~2,000高斯。黑子磁场的自然衰减时间是很长的。
  在日面宁静区,过去认为只有微弱的磁场,其强度约为1~10高斯。可是新的观测表明,宁静区的磁场的强度同样是很不均匀的,也含有许多磁结点。它们在日面上所占面积很小,却含有日面宁静区绝大部分的磁通量。具体说来,宁静区磁结点的范围还不到200公里,而它们含的磁通量竟占整个宁静区的90%左右。由于磁通量集中,磁结点的磁场强度可达上千高斯,远远超过宁静区大范围的平均磁场强度。

  行星际磁场的扇形结构
  在磁场“冻结”的情况下,太阳风的粒子带着磁力线跑,于是太阳磁场便弥漫于整个太阳系空间。因为太阳在自转,太阳风所携带的磁力线就不是直线,而是螺旋线。此外,日面上有整体磁场,相邻磁区的极性是相反的。这些因素同时起作用,形成行星际磁场的扇形结构。它和太阳整体磁场密切相关,它们的极性几乎完全一致。太阳整体磁场的极性一旦转换,行星际磁场的极性立即跟着转换。
  随着太阳磁场向外扩张,它的强度也就越来越弱。在地球外围空间,磁场强度还不到万分之一高斯。然而由于行星际空间的气体极为稀薄,这样弱的磁场也能对物质运动产生支配作用。在太阳风的作用下,地磁场被压缩在地球磁层的范围内,不能向外延伸。
  目前对太阳磁场测量只限于太阳大气。至于太阳内部磁场,还不能直接测量,只能用理论方法作粗略的估计。有人认为它可能比大气的磁场强得多。
回复 支持 反对

使用道具 举报

 楼主| 发表于 2012-12-13 12:58:04 | 显示全部楼层
磁星
  “磁星”(Magnetar)是中子星的一种,它们均拥有极强的磁场,透过其产生的衰变,使之能源源不绝地释出高能量电磁辐射,以X射线及伽玛射线为主。磁星的理论于1992年由科学家罗伯特·邓肯(Robert Duncan)及克里斯托佛·汤普森(Christopher Thompson)首先提出,在其后几年间,这个假设得到广泛接纳,去解释软伽玛射线复发源(soft gamma repeater)及不规则X射线脉冲星(anomalous X-ray pulsar)等可观测天体。
  简介
  magnetic star
  具有强磁场的恒星。通常光谱型为A,磁场可以强到3特(斯拉)。磁星的磁场强度还在变化,故又称磁变星。磁变星大多为A型特殊星。一部分磁变星,不仅磁场周期性变化,光度和光谱也变化。光变周期1~25天,变幅一般不超过0.1等。
  “磁星”(Magnetar)是中子星的一种,它们均拥有极强的磁场,透过其产生的衰变,使之能源源不绝地释出高能量电磁辐射,以X射线及伽玛射线为主。磁星的理论于1992年由科学家罗伯特·邓肯(Robert Duncan)及克里斯托佛·汤普森(Christopher Thompson)首先提出,在其后几年间,这个假设得到广泛接纳,去解释软伽玛射线复发源(soft gamma repeater)及不规则X射线脉冲星(anomalous X-ray pulsar)等可观测天体。

形成
  

当一颗大型恒星经过超新星爆发后,它会塌缩为一颗中子星,其磁场也会迅速增强。在科学家邓肯及汤普森的计算结果当中,其强度约为一亿特斯拉(108 Tesla),在某些情况更可达1,000亿特斯拉(1011 T,1015 Gauss),这些极强磁场的中子星便被称为“磁星”。而地球表面的天然地磁场强度,在赤道附近约3.5×10-5 T,在两极附近约7×10-5 T。
  一颗超新星在爆发期间,自身可能会失去约10%的质量,一颗质量为太阳的10倍到30倍的恒星,在避免塌缩成黑洞的情况下,它们需要放出更大的质量,可能为自身的80%。
  据估计,每大约十颗超新星爆发中,便会有一颗能成为磁星,而非一般的中子星或脉冲星。在它们演变成超新星前,自身需拥有强大磁场及高自转速度,方有机会演化成磁星。有人认为,磁星的磁场可能是在中子星诞生后首十秒左右,透过炽热内核物质的对流所产生的,情形就如一台发动机。如果在对流现象发生期间同时拥有高自转速度(周期约10毫秒左右),其产生的电流足以传遍整颗天体,便足够把其自转动能转为其磁场。相反,如果天体的自转速度较慢,其内核物质的对流所产生的电流不足以传遍整颗天体,只在局部区域流动。

短寿命
  一颗磁星的外层含有等离子及以铁为主的重元素,在张力产生期间,天体会出现“星震”(starquake),这种地震能使天体释放强大能量,包括释出X射线暴及伽玛射线暴,天文学家把这种天体称为“软伽玛射线复发源”。
  如果把一颗磁星看成为“软伽玛射线复发源”,它们的寿命相当短暂。“星震”会释出大量物质及能量,当中物质被困在自身的强大磁场中,继而在数分钟内蒸发殆尽,另外其他能以放射形式释出的物质,其动能来自天体的角动量,使磁星的自转速度减慢,且比其他中子星减得更快。转速减慢会连带其强大磁场一同减弱,到大约一万年后磁星的“星震”停止,期间仍会释出X射线,天文学家将之称为“不规则X射线脉冲星”。再过大约一万年后,其活动几近停止。“星震”属于一种瞬间的大型破坏,当中一些给人们直接记录,例如2004年12月27日的SGR 1806-20,随着天文望远镜的精确度日高,预计在未来人们能记录更多类似现象。

本帖子中包含更多资源

您需要 登录 才可以下载或查看,没有帐号?立即注册

x
回复 支持 反对

使用道具 举报

 楼主| 发表于 2012-12-13 13:08:22 | 显示全部楼层
地球磁场

地球磁场言是偶极型的,近似于把一个磁铁棒放到地球中心,使它的北极大体上对着南极而产生的磁场形状,但并不与地理上的南北极重合,存在磁偏角。当然,地球中心并没有磁铁棒,而是通过电流在导电液体核中流动的发电机效应产生磁场的。

概述
地球磁场 The Earth magnetic field不是孤立的,它受到外界扰动的影响,宇宙飞船就已经探测到太阳风的存在。太阳风是从太阳日冕层向行星际空间抛射出的高温高速低密度的粒子流,主要成分是电离氢和电离氦。

  因为太阳风是一种等离子体,所以它也有磁场,太阳风磁场对地球磁场施加作用,好像要把地球磁场从地球上吹走似的。尽管这样,地球磁场仍有效地阻止了太阳风长驱直入。在地球磁场的反抗下,太阳风绕过地球磁场,继续向前运动,于是形成了一个被太阳风包围的、彗星状的地球磁场区域,这就是磁层。
  地球磁层位于距大气层顶600~1000公里高处,磁层的外边界叫磁层顶,离地面5~7万公里。在太阳风的压缩下,地球磁力线向背着太阳一面的空间延伸得很远,形成一条长长的尾巴,称为磁尾。在磁赤道附近,有一个特殊的界面,在界面两边,磁力线突然改变方向,此界面称为中性片。中性片上的磁场强度微乎其微,厚度大约有1000公里。中性片将磁尾部分成两部分:北面的磁力线向着地球,南面的磁力线离开地球。

1967年发现,在中性片两侧约10个地球半径的范围里,充满了密度较大的等离子体,这一区域称作等离子体片。当太阳活动剧烈时,等离子片中的高能粒子增多,并且快速地沿磁力线向地球极区沉降,于是便出现了千姿百态、绚丽多彩的极光。由于太阳风以高速接近地球磁场的边缘,便形成了一个无碰撞的地球弓形激波的波阵面。波阵面与磁层顶之间的过渡区叫做磁鞘,厚度为3~4个地球半径。
地球磁层是一个颇为复杂的问题,其中的物理机制有待于深入研究。磁层这一概念近来已从地球扩展到其他行星。甚至有人认为中子星和活动星系核也具有磁层特征。

形成原因
通常物质所带的正电和负电是相等数量的,但由于地球核心物质受到的压力较大,温度也较高,约6000°C,内部有大量的铁磁质元素,物质变成带电量不等的离子体,即原子中的电子克服原子核的引力,变成自由电子,加上由于地核中物质受着巨大的压力作用,自由电子趋于朝压力较低的地幔,使地核处于带正电状态,地幔附近处于带负电状态,情况就象是一个巨大的“原子”。

  科学家相信,由于地核的体积极大,温度和压力又相对较高,使地层的导电率极高,使得电流就如同存在于没有电阻的线圈中,可以永不消失地在其中流动,这使地球形成了一个磁场强度较稳定的南北磁极。另外,电子的分布位置并不是固定不变的,并会因许多的因素影响下会发生变化,再加上太阳和月亮 的引力作用,地核的自转与地壳和地幔并不同步,这会产生一强大的交变电磁场,地球磁场的南北磁极因而发生一种低速运动,造成地球的南北磁极翻转。

  太阳和木星亦具有很强的磁场,其中木星的磁场强度是地球磁场的20至40倍。太阳和木星上的元素主要是氢和少量的氦、氧等这类较轻的元素,与地球不同,其内部并没有大量的铁磁质元素,那么,太阳和 木星的磁场为何比地球还强呢?木星内部的温度约为30000°C左右,压力也比地球内部高的多,太阳内部的 压力、温度还要更高。这使太阳和木星内部产生更加广阔的电子壳层,再加上木星的自转速度较快,其自 转一周的时间约10小时,故此其磁场强度自然也要比地球高的多。事实上,如果天体的内部温度够高,则天体的磁场强度与其内部是否含有铁、钴、镍等铁磁质元素无关。由于太阳、木星内部的压力、温度远高于地球,因此,太阳、木星上的磁场要比地球磁场强的多。而火星、水星的磁 场比地球磁场弱,则说明火星、水星内部的压力、温度远低于地球。
  关于地球磁场的形成原因,一种关于地球磁场成因的假说认为:地球磁场的形成原因和其它行星的磁场的形成原因是类似的,地球或其它行星由于某种原因而带上了电荷或者导致各个圈层间电荷分布不均匀。这些电荷由于随行星的自转而做圆周运动,由于运动的电荷就是电流,电流必然产生磁场。这个产生的磁场就是行星的磁场,地球的磁场也是类似的原因产生的。这个假说和各个行星磁场的有无和强弱现象符合的非常完美。

本帖子中包含更多资源

您需要 登录 才可以下载或查看,没有帐号?立即注册

x
回复 支持 反对

使用道具 举报

 楼主| 发表于 2012-12-13 13:13:10 | 显示全部楼层
磁极的位置


发现


 历史上,第一个提出地磁场理论概念的是英国人吉尔伯特。他在1600年提出一种论点,认为地球自身就是一个巨大的磁体,它的两极和地理两极相重合。这一理论确立了地磁场与地球的关系,指出地磁场的起因不应该在地球之外,而应在地球内部。
  1893年,数学家高斯在他的著作《地磁力的绝对强度》中,从地磁成因于地球内部这一假设出发,创立了描绘地磁场的数学方法,从而使地磁场的测量和起源研究都可以用数学理论来表示。但这仅仅是一种形式上的理论,并没有从本质上阐明地磁场的起源。
  现在科学家们已基本掌握了地磁场的分布与变化规律,但是,对于地磁场的起源问题,学术界却一直没有找到一个令人满意的答案。
  目前,关于地磁场起源的假说归纳起来可分为两大类,第一类假说是以现有的物理学理论为依据;第二类假说则独辟蹊径,认为对于地球这样一个宇宙物体,存在着不同于现有已知理论的特殊规律。
  属于第一类假说的有旋转电荷假说。它假定地球上存在着等量的异性电荷,一种分布在地球内部,另一种分布在地球表面,电荷随地球旋转,因而产生了磁场。这一假说能够很自然地通过电与磁的关系解释地磁场的成因。但是,这个假说却有一个致命缺点,首先它不能解释地球内外的电荷是如何分离的;其次,地球负载的电荷并不多,由它产生的磁场是很微弱的,根据计算,如果要想得到地磁场这样的磁场强度,地球的电荷储量需要扩大1亿倍才行,理论计算和实际情况出入很大。
  以地核为前提条件的地磁场假说也属于第一类假说,弗兰克在这类假说中提出了发电机效应理论。他认为地核中电流的形成,应该是地核金属物质在磁场中做涡旋运动时,通过感应的方式而发生的。同时,电流自身形式的场就是连续不断的再生磁场,好像发电机中的情形一样。弗兰克所建立的模型说明了怎样实现地磁场的再生过程,解释了地磁场有一定的数值。但是在应用这种模型的时候,却很难解释地核中的这种电路是怎样通过圆形回路而闭合的。此外,这个模型也没有考虑到电流对涡旋运动的反作用,而这种反作用是不允许涡旋分布于平行赤道面的平面内的。
  属于第一类假说的还有漂移电流假说、热力效应假说和霍尔效应假说等,但这些假说都不能全面地解释地磁场的奇异特性。
  关于地磁场起源还有第二类假说,这其中最具代表性的就是重物旋转假说。
  1947年,布莱克特提出任意一个旋转体都具有磁矩,它与旋转体内是否存在电荷无关。这一假说认为,地球和其他天体的磁场都是在旋转中产生的,也就是说星体自然生磁,就好像电荷转动能产生磁场一样。但是,这一假说在试验和天文观测两方面都遇到了困难。在现有的实验条件下,还没有观察到旋转物体产生的磁效应。而对天体的观测结果表明,每个星球的磁场分布状况都很复杂,尚不能证明星球的旋转与磁场之间存在着必然的依存关系。
  因此上说,关于地磁场的起源问题,学术界仍处在探索与争鸣之中,尚没有一个具有相当说服力的理论,对地磁场的成因作出解释。

分布

 地磁场的形成具有一定特殊性,按照旋转质量场假说,地球在自转过程中产生磁场。但是,从运动相对性的观点考虑,居住在地球上的人是不应该感受到地磁场的,因为人静止于地球表面,随地球一同转动,所以地球上的人是无法感觉到地球自转产生的磁场效应的。
通常所说的地磁场只能算作地球表面磁场,并不是地球的全球性磁场(又称空间磁场),它是由地核旋转形成的。地球的内部结构可分为地壳、地幔和地核。美国科学家在试验中发现,地球内外的自转速度是不一样的,地核的自转速度大于地壳的自转速度。也就是说,地球表面的人虽然感觉不到地球的自转,但却能感觉到地核旋转所产生的质量场效应,就是它产生了地球的表面磁场。科学家在研究中还发现,地核的自转轴与地球的自转轴不在一条直线上,所以由地核旋转形成的地磁场两极与地理两极并不重合,这就是地磁场磁偏角的形成原因。

本帖子中包含更多资源

您需要 登录 才可以下载或查看,没有帐号?立即注册

x
回复 支持 反对

使用道具 举报

 楼主| 发表于 2012-12-13 13:55:02 | 显示全部楼层
变化规律


 科学家们在对地磁场的研究中发现,地磁场是变化的,不仅强度不恒定,而且磁极也在发生变化,每隔一段时间就要发生一次磁极倒转现象。
早在二十世纪初,法国科学家布律内就发现,70万年前地磁场曾发生过倒转。1928年,日本科学家松山基范也得出了同样的研究结果。第二次世界大战后,随着古地磁研究的迅速发展,人们获得了越来越多的地磁场倒转证据。如岩浆在冷却凝固成岩石时,会受到地磁场的磁化而保留着像磁铁一样的磁性,其磁场方向和成岩时的地磁场方向一致。科学家在研究中发现,有些岩石的磁场方向与现代地磁场方向相同,而有些岩石的磁场方向与现代地磁场方向正好相反。科学工作者通过陆上岩石和海底沉积物的磁力测定,及洋底磁异常条带的分析终于发现,在过去的7600万年间,地球曾发生过171次磁极倒转。距今最近的一次发生在70万年前,正如布律内所指出的那样。

倒转原因

 根据地磁场起源理论,地磁场磁极之所以发生倒转,是由地核自转角速度发生变化而引起的。地壳和地核的自转速度是不同步的,现阶段地核的自转速度大于地壳的自转速度。然而,40亿年前,情况却不是这样,那时地球表面呈熔融状态,月球也刚刚被俘获,地球从里到外的自转速度是一致的,地球表面不存在磁场。但是,随着地球向月球传输角动量,地球的自转角速度越来越小。同时,地球也渐渐形成了地壳、地幔和地核三层结构。地球自转角动量的变化首先反映在地壳上,出现了地壳自转速度小于地核自转速度的情形。这时,在地球表面第一次可以感受到磁场的存在,地核以大于地壳的自转速度形成了地磁场。按照左手定则,磁场的N极在地理南极附近,磁场的S极在地理北极附近。地壳与地核自转角速度不同步,这种情形并不能长久地保持下去,地核必然通过地幔软流层物质向地壳传输角动量,其结果是地核的自转角速度逐渐减小,地壳的自转角速度逐渐增大。当地壳与地核的自转角速度此增彼减而最终一致时,地磁场就会在地球表面消失。地核与地壳间的角动量传输并不会到此为止,在惯性的作用下,地壳的自转角速度还在继续增大,地核的自转角速度继续减小,于是出现了地壳自转角速度大于地核自转角速度的情形。这时,在地球表面就会感受到来自地核逆地球自转方向的旋转质量场效应。按照左手定则判断,新形成的地磁场的N极在地理北极附近,S极在地理南极附近。从较长的时期看,整个地球的自转速度处在减速状态,但地壳与地核间的相对速度却是呈周期性变化的,这就是每隔一段时间地球磁场就要发生一次倒转的原因。


据测定,地磁场发生倒转前有明显的预兆,地球的磁场强度减弱直至为零,随后,约需一万年的光景,磁场强度才缓缓恢复,但是,磁场方向却完全相反。目前,地球磁场强度有逐渐减弱的趋势,在过去的4000年中,北美洲的磁场强度已减弱了50%,这说明地核相对地壳的速度差正在缩小。
值得说明的是,无论地球表面测得的地磁场方向如何发生变化,但是,在太空中地磁场的方向却始终是不变的。因为在太空中测得的地磁场,是整个地球自转产生的旋转质量场效应,并不会因为地壳与地核相对速度的改变而发生变化。根据左手定则,在太空中测得的地磁场的N方向始终在地理南极上空。
  在电磁感应效应中,通电导体产生的磁场强度与电流强度成正比,即与导体内“定向移动”的自由电子数目成正比。而每个电子的自旋角动量又是恒定的,所以磁场强度实际上是与所有电子的自旋角动量之和成正比。同理,宏观物体产生的磁场强度,也应与旋转质量场的角动量成正比,即与物体的质量和自旋角速度成正比,与质量场的旋转半径(观测点到物体质心的距离)成反比。用公式表示为:
  H = f mω/r = f 0 m / T r (f 0为常数,T为自转周期,r为旋转质量场半径)
  根据这一公式,在地球表面测得的磁场强度H,只与地核的质量成正比,角速度ω的取值为地壳与地核自转角速度之差,r为地球的半径(地磁场强度为5×10-5特斯拉)。而地球在太空中形成的空间磁场,其磁场强度与整个地球的质量成正比,与地球的自转角速度成正比(近似值),与观测点到地球中心的距离成反比。因此,在近地球的宇宙空间,地球所形成的空间磁场强度大于地表的磁场强度。空间磁场的最大特点是磁极恒定,不会像地球表面磁场那样发生磁极倒转现象。

地球磁场没有翻转过不会消失
 当居里告诉人们,永磁不耐高温时。人们开始意识到地球磁场就应该是一个电磁场。电磁场遵循麦克斯韦方程原理,所以在地球里面一定有电流在流动。依据我们测得的地球磁场形态反推地球电场,地球电场电流的最大处应该在赤道切面的平面上。当代地磁场理论认为,这个电流是在地核赤道上流动的(地核发电机原理),它的动力源于地球层之间的自转差。实际上这是一些很不切实际的想法,地球的较差自转本身就不是一个加速度,它不会有能量产生。赤道环电流形成地磁场,电流在地核上要比在地壳上须要更强大的动力,它是在级数上差别的能量级。所以根本上说地球内部就不会有这么大的能量产生。
  科学的进步使人们知道,对自己周围的环境数量化很是重要。二十世纪人类开始测量各地岩石的剩余磁场,它可以表明岩石形成时地球磁场的许多参数。测量的结果令人震惊,有许多的岩石剩余磁场颠倒了。颠倒的剩磁是当时主要想解释的矛盾,经过很长时间思考,没有更好的解释,只好是说地磁场翻转了。可是岩石剩磁场不仅是颠倒,而且由下倾变为向上翘,这在当时科学界没太多地注意这个问题。

这只是一个空间概念问题的思考,实际上地球磁场从来就没有翻转过。我们可以想象,在你面前横放着一个导电体,流经它的电流就可以在导体周围产生一个磁场,你可以把在你这边的磁场定义为正向磁场,那么在导体的另一边对你这面来说就是一个反向磁场。
  你面对的正向磁场某个点上,有它的场强、极向和倾角。在磁场发生翻转时,也就是说导体的电流方向发生改变。这时磁场极向也就改变了,可是磁场的磁倾角是不会改变的。极向和倾角同时改变的情况就只有到导电体的反向磁场相对位置中去找。地球岩石的翻转剩磁可以说都是在地电流层之下形成的,所以它们的磁场极向和磁倾角都发生了改变。
  有人会问,地球磁场在几十亿年的进化中到底发生过翻转吗?解决这个问题,这就只能到剩余磁性的资料里去翻看了,要是发现有磁场极向改变而磁倾角不变地层,这说明会有地磁场翻转的情况发生。可是地球磁场从来就没有翻转过。
  地球生物都是在地球表面和水中进化的,所以地球生物从来就没有在逆向磁场中生存过。这样地球生物演化的表现也就没有逆向磁场的生物特征留存。
  麦克斯韦方程反推地球电场和岩石剩余磁场唯一解释都说明,地球电磁场的电流是在地壳中流动着,但是我们为什么很少能感觉到这个地电流的存在呢?这主要是因为电流在地壳导体场流动时,它有一个最小电阻路径原理。因为地球是圆的,所以地电流不会表现到地球表面上来。
  地球的演化、乃至太阳系的演化是一个恒定变化的过程,在其中很少会有突发事件发生。行星的磁场如果发生翻转,那可以说是突发事件引诱的,这种突发事件在太阳里我们无法找到它的诱发点。地球磁场也从来就没有翻转过。

本帖子中包含更多资源

您需要 登录 才可以下载或查看,没有帐号?立即注册

x
回复 支持 反对

使用道具 举报

 楼主| 发表于 2012-12-13 13:59:28 | 显示全部楼层
特性
  地球的磁性,是地球内部的物理性质之一。地球是一个大磁体,在其周围形成磁场,即表现出磁力作用的空间,称作地磁场。它和一个置于地心的磁偶极子的磁场很近似,这是地磁场的最基本特性。地磁场强度很弱,这是地磁场的另一特性,在最强的两极其强度不到10-4(T),平均强度约为0.6x10-4(T),而它随地点或时间的变化就更小,因此常用(γ),即10 -9(T)做为磁场强度单位。

起源

  关于地球磁场的来源,早期历史上曾有来自北极星的传说,但是到公元17世纪初就已经认识到地球本身就是一个巨大的磁体,不过当时仍不清楚地球磁场是怎样产生的。随着科学的发展,对于地球磁场观测和地球结构的研究不断增多和深入,对地球磁场的来源先后提出了10多种学说。这里按照历史的先后对一些各有一定根据或设想的地球磁场来源学说作简单介绍:
  ⑴永磁体学说,是最早提出的一种学说,认为地球内部存在巨大的永磁体,由这永磁体产生地球磁场。这是一个永磁场的假说,地球起源于一块巨大的磁体.19世纪末,著名物理学家居里夫人发现磁石的物理特性,就是当磁石加热到一定温度时,原来的磁性就会消失.正好可以证明地球在诞生之初只是一块超大的磁石,他吸引附近带铁、钴、镍元素的小行星.陨石和磁石,因为某种原因产生的高温使这块磁石的磁力消失而变成了电磁铁中间的磁芯..因为这块磁芯没有固定所以会发生磁极颠倒,牛顿发现的地球引力其实就是磁力当然这些还需要科学家的验证...................按照“居里点”的的结论地球内部不能有一个永磁体,但是并不代表它最初不是一块永磁体
  ⑵内部电流学说,认为地球内部存在巨大的电流,形成巨大电磁体产生地球磁场,但是既未观测到这种巨大电流,而且巨大电流也会很快衰减,不会长期存在。
      ⑶电荷旋转学说(公元1900年,简写作1900),认为地球表面和内部分别分布着符号相反、数量相等的电荷,由地球自转而形成闭合电流,由此电流产生磁场,但这学说缺乏理论和实验基础。
  ⑷压电效应学说(1929),认为在地球内部物质在超高压力下使物质中的电荷分离,电子在这样的电场中运动而产生电流和磁场。但理论计算出这样的磁场仅有地磁场的约千分之一(10-3)。
  ⑸旋磁效应学说(1933),认为地球内的强磁物质旋转可以产生地球磁场,但这种旋磁效应产生的磁场只有地球磁场的大约千亿分之一(10-11)。
  ⑹温差电效应学说(1939),认为地球内部的放射性物质产生的热量,使熔融物质发生连续的不均匀对流,这样产生温差电动势和电流,由此电流产生地球磁场,但理论估计也同地球磁场不符合。
  ⑺发电机学说(1946-1947),认为是地球内部的导电液体在流动时产生稳恒的电流,由这电流产生地球磁场。
  ⑻旋转体效应学说(1947),是根据少数天体观测得到的经验规律,认为具有角动量的旋转物体都会产生磁矩,因而产生磁场。这一学说需要使用一无科学根据的常数,5年后又被提出这一学说的科学家根据精密的实验结果加以否定了。
  ⑼磁力线扭结学说(1950),认为在地球磁场磁力线的张力特性和地核的较差自转,会使原始微弱的地球磁场放大,由此产生地球磁场。
  ⑽霍尔效应学说(1954),认为在地球内部由于温度不均匀产生的温差电流和原始微弱磁场的同时使用下,会由霍尔效应产生霍尔电动势和霍尔电流,由此产生地球磁场。
  ⑾电磁感应学说(1956),认为由太阳的强烈磁活动通过带电粒子的太阳风到达地球后,会通过地球内部的电磁感应和整流作用产生地球内部的电流,由此产生地球磁场。在这些学说中,只有发电机学说(又称磁流体发电机学说)在观 测、实验和理论研究上得到较多的证认,是目前研究和应用较多的地球磁场学说。

地磁场变化
  由于地壳板块运动错位移动,地磁场会缓慢发生变动。至于引发的其他自然变化需要进行跟踪检测,长期积累数据,进入2000年前后,地壳板块明显感觉真实检测数据更加详细,所以,地磁场的数据可以根据参照物的数据测定和推断。

科学家首次实测出地核磁场强度
 美国加州大学伯克利分校地球物理学家首次测量出地下1800英里(约2900公里)深处地核区的磁场强度,为证明地核热源提供了重要参数,正是地核热源造成了内部电流维持着磁场。
  论文作者、加州大学伯克利分校地球与行星科学教授布鲁斯·巴菲特表示,这是首次根据观测而不是推断得到的真正数据,这一没有争议的结果将平息地核内部磁场强弱之争。他们根据观测计算出此处地核磁场强度为25高斯,是地球表面的50倍。该数据只是地球物理学家预测的中等水平。
  地核内有强磁场意味着有很强的热源,科学家之前假设能量源是40亿年前地球在热熔化状态时留下的余热、重元素沉积和寿命较长的元素发生的放射性衰变。地球内部约60%的能量可能来自于固态内核变冷膨胀时排出较轻的元素,如果磁场只有很弱的5高斯,表明由放射性衰变所供给的热量很少,如果磁场达到100高斯,则表明放射性衰变很强。
  地核包括液态外核和固态内核。液态外核包含了地球2/3的铁和镍,约1400英里(约2300公里)厚,形成了地球磁场;内核则是半径800英里(约1300公里)的凝固铁镍球,约是月亮大小。地核被热粘稠的地幔和一层坚硬的地壳包围。
  变冷的地球最初从太阳系的行星轨道中获得了磁场。如果内部没有形成电流产生磁场的话,这一外部磁场将在1万年内消失。热量使外核沸腾或“对流”,通过已有磁场引导金属升降,产生了电流继续维持磁场。而这种流动发电在地表产生了缓慢的磁场转变。
  巴菲特根据观测改进了地球内部发电模型,目前正在研究第二代模型。他认为,地球内部信息的缺乏会对构建精确模型造成很大障碍,而月亮在地球旋转轴倾角上的拉力,能提供地球内部磁场的信息。月球拉力使得内核自转轴缓慢地以相反方向运动,这种运动改变了外核磁场受到外核磁场的阻碍。巴菲特通过对远距离类星体(极明亮活跃的星系)的无线电观测计算出这一阻力,进而计算出外核的磁场强度是25高斯。
  巴菲特指出,25高斯是整体外核的平均水平,磁场会随位置不同而变化。“由此我们还发现,观察远距离类的星体,能帮助照见地球内部。”

磁场对人类作用
  地球磁场跟地球引力场一样,是一个地球物理场,它是由基本磁场与变化磁场两部分组成的.基本磁场是地磁场的主要部分,起源于地球内部,比较稳定,变化非常缓慢.变化磁场包括地磁场的各种短期变化,与电离层的变化和太阳活动等 有关,并且很微弱.
  地磁场也是一个向量场.描述空间某一点地磁场的强度和方向,需要3个独立的地磁要素.常用的地磁要素有7个,即地磁场总强度F,水平强度H,垂直强度Z,X和Y分别为H的北向和东向分量,D和I分别为磁偏角和磁倾角.
  自从高斯(Gauss)把球谐分析方法引进地磁学,建立地磁场的数学描述以来,地磁学得到了极大的发展.目前,地磁模型包括全球的和局部地区的两种.
  它就是到目前为止IAGA的有关小组每5年给出一个世界地磁参考场(IGRF).
  全球地磁场模型:
  在球极坐标系中,拉普拉斯方程的通解为: _
  在高斯分析中是根据内边界上的函数值及其法向变化率来确定高斯系数(g,h)的.
  局部磁场模型
  局部地区的地磁场模型方面的学术问题与全球的有所不同,局部地区的地磁场模型不能采用球谐分析方法因为没有"三维"意义
  地磁场模型与地磁图是了解研究地磁场空间分布与时间变化规律,及其源的特征与变化的基础.因此,也是了解我们地球及有关的动力学过程的重要手段.
  地磁场模型的科学价值:
  经过多年研究分析,俄罗斯科学院医学基因研究中心地磁,电离层和无线电波扩散研究所的科研人员提出,地磁场的变化可导致人体淋巴染色体的畸变,使畸变的频率提高两倍.
  地磁场的其他应用:
  通过实验,科研人员得出结论,磁场变化的速度而不是磁场的绝对量影响染色体畸变的频率和细胞分裂过程中物质的交换,在一定范围内,地磁场的变化甚至影响DNA的合成.
  据现代科学证明,地磁(气场)对人体有很大的影响:
  如果人体长期顺着地磁的南北方向可使人体器官细胞有序化,产生生物磁化效应,使生物电得到加强,器官机能得到调整和增进,从而起到了良好的作用.
  在地球南北两极附近地区的高空,夜间常会出现灿烂美丽的光辉.有时它像一条彩带,有时它像一团火焰,有时它又像一张五光十色的巨大银幕.它轻盈地飘荡,同时忽暗忽明,发出红的,蓝的,绿的,紫的光芒.静寂的极地由于它的出现骤然显得富有生气.这种壮丽动人的景象就叫做极光.
  产生极光的原因是来自大气外的高能粒子(电子和质子)撞击高层大气中的原子的作用.这种相互作用常发生在地球磁极周围区域.现在所知,作为太阳风的一部分荷电粒子在到达地球附近时,被地球磁场俘获,并使其朝向磁极下落.它们与氧和氮的原子碰撞,击走电子,使之成为激发态的离子,这些离子发射不同波长的辐射,产生出红,绿或蓝等色的极光特征色彩.
  在太阳活动盛期,极光有时会延伸到中纬度地带,极光有发光的帷幕状,弧状,带状和射线状等多种形状.发光均匀的弧状极光是最稳定的外形,有时能存留几个小时而看不出明显变化.然而,大多数其他形状的极光通常总是呈现出快速的变化.弧状的和折叠状的极光的下边缘轮廓通常都比上端更明显.极光最后都朝地极方向退去,辉光射线逐渐消失在弥漫的白光天区.造成极光动态变化的机制尚示完全明了.
  在太阳创造的诸如光和热等形式的能量中,有一种能量被称为"太阳风".这是一束可以覆盖地球的强大的带电亚原子颗粒流,该太阳风在地球上空环绕地球流动,以大约每秒400公里的速度撞击地球磁场,磁场使该颗粒流偏向地磁极,从而导致带电颗粒与地球上层大气发生化学反应,形成极光.
  地球的磁场还在不断发生变化,其变化方式也在发生变化.不同地方的磁场方向和强度均以不同的方式发生变化,可能变小,也可能南北极发生大翻转 .由于地球磁场的复杂性,要预计它在遥远的将来会是什么样子是不可能的.地球物理学家们利用分布在世界许多地方的磁场观测点收集的数据,通过数学模型分析出磁场将如何变化.
  地球磁场不是孤立的,它受到外界扰动的影响,地球磁层是一个颇为复杂的问题,其中的物理机制有待于深入研究。

本帖子中包含更多资源

您需要 登录 才可以下载或查看,没有帐号?立即注册

x
回复 支持 反对

使用道具 举报

快速发帖

您需要登录后才可以回帖 登录 | 立即注册

本版积分规则

☆☆ 联系我们 ★★|手机版|上古天真网

GMT+8, 2024-4-19 10:08 , Processed in 0.056934 second(s), 15 queries .

Powered by Discuz! X3.4

© 2001-2012 Comsenz Inc.

返回顶部